
MODIFIED NEWTON-RAPHSON METHOD FOR SOLVING A SYSTEM OF NONLINEAR EQUATIONS 
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A method is proposed for solving the nonlinear system of equations arising 
from an algebraic approximation of equations of radiation and convection 
energy transport. 

Prediction of the thermal regimes of high-temperature technical Objects is usually 
based on a zonal method, which allows us to reduce the problem of simultaneous energy trans- 
fer by radiation and convection to the solution of the system of nonlinear algebraic equa- 
tions [i]: 

N N 

"~ R~j(T~)~ + ~.~ Ai:Tj + Sl = O, i = 1, N. 
,=i >i (i) 

The matrix of the coefficients of convective exchange Aij is asymmetrical, it has a 
predominance of diagonal elements and a disperse (sparse) structure: The number of nonzero 
elements in the i-th row is determined by the number of the neighbors that interact with 
the i-th zone. The matrix of the coefficients of radiative exchange Rij in the general 
case is asymmetrical, it has diagonal predominance and is filled completely (with nonzero 
elements). However, for most practical cases this matrix has a block structure: Each block 
with a dimensionality of N b • N b corresponds to a subsystem from N b zones, closed with 
respect to radiation, which interacts with other subsystems only by means of convection 
and heat conduction. In addition, if we can neglect the selectivity of radiation of the 
medium and the boundaries, then the matrix Rij is symmetrical. 

Of a host of possible methods [I-3] of the solution of the system of Eqs. (I) the New- 
ton-Raphson method is most often used. In its classical formulation this method assumes 
an exact solution of the system of linearized equations on each iteration. Apparently, 
this approach is the best when the number of equations in system (i) does not exceed I00. 
However, even here one can encounter difficulties, if the initial point lies too far from 
the solution. As for high-dimension problems, the exact solution of a linearized system 
by the Gauss method of elimination is onerous from the point of view of time and memory. 
Because of the inevitable linearization errors it is not necessary to obtain an exact solu- 
tion for each iteration, and for obtaining an approximate solution it is better to use itera- 
tion methods, for example, the method of conjugate gradients [5, 6]. 

In the present work, a modified version of the Newton-Raphson method is used, which 
is free from the drawbacks mentioned above. The new method provides for considerable sav- 
ings in calculations due to the use of the method of conjugate gradients for solving the 
linearized system of equations. 

In the classical Newton-Raphson method, at first an approximate value for each tempera- 
ture Ti ~ is specified and the discrepancies are determined: 

N N 
~0 
~ ~ E A~ , r~  q- S, �9 (2) 

/=l ,,=1 

Then the corrections ATi ~ are calculated so that Ti z = Ti ~ + ATi ~ The values of ATi ~ are 
determined by solving the following system of equations, which is the result of lineariza- 
tion of (i): 
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Fig. I. Conditional diagram and distribution of relative temperatures 
in a sample: a) model of a thin screen; b) diagram of a radiation pipe; 
c) temperature distribution on the inner surface of the external pipe at 
three points shown in Fig. la; d) variation of the relative temperature 
of the heat carrier along the direction of its motion: (i) calculated 
values of the relative temperature for the pipe divided into ten regions, 
(2) calculated temperatures for the pipe divided into five regions, (3) 
calculated temperatures for the pipe divided into two regions, (4) cal- 
culated temperatures for the pipe considered as one region; e) isotherms 
of the surface F2; f) isotherms of the surface F3, q, deg. 
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or in the vector form 
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The values of Ti l, determined in this way, are used for the calculation of a new correction 
N 

and the process is continued until the condition of convergence is attained: (v ($n)2/N)I/2 
i=! 

New Variables. As usual, the system of Eqs. (3) is ill-conditioned and, therefore, 
it is of little use for solving by iteration methods. We carry out the substitution of 
variables: 

AX~ = [4R~ (T~)a + A,d ATe. (4) 

By substituting the values of AT i from (4) in (3), we arrive at a system of equations linear 
with respect to AX i with a preconditioned matrix. Such a system is well-suited for solving 
by the method of conjugate gradients by using the standard scheme with symmetrization [6]. 
As a result, we find the unknown values of increments AXi ~ If we now use Eq. (4) for the 
determination of the corrections ATi ~ then we return to the classic Newton-Raphson scheme, 
which diverges for a poor choice of Ti~ The stability factor of the method with respect 
to the choice of the initial approximation can be improved slightly, if we consider (4) as 
a linearization of the following relationship, which holds exactly: 

Xi = RnT~ -Jr- A.TI.  (5) 
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Therefore, by knowing the increments AXi ~ we determine the values of Xi I = Xi ~ + 
AXi ~ After this, for the determination of new values of the temperature Ti I, we solve 
the nonlinear equations 

Ru (T~ )~ + AuT ~ = X~ , i =  l, N. (6) 

Each of these equations is solved separately with the help of the Newton method. The tem- 
perature values that are determined in this way are used for the calculation of a new dis- 
crepancy (3) and the process is continued until convergence is attained. 

Physical Systems with Screens. The modified Newton-Raphson method that we have con- 
sidered is very effective if the system of Eqs. (2) is not too "rigorous." There are a 
number of practically important problems, which can be solved by the aforementioned method. 
The problem of complicated heat exchange in a physical system with a screen, which has a 
low thermal resistance, can serve as an example. 

Before we consider the general algorithm, we explain the essence of the difficulties 
that arise when solving the system of Eqs. (i). In Fig. la we show a plate that is heated 
at the top by the flow of incident radiation qin- Both sides of the plate are absolutely 
black and radiate freely in the surrounding medium. The system of equations of heat balance 
for the upper and lower sides of the plate is of the form (for i m 2 of the surface) 

-- r - -  DxTz + D~T,~ + qin= O, 

-- aT 4 + D~,Tz-- D~T m = O, 
(7) 

where D h = h/h. If D% + ~, then T L + Tm, and the linearized system (7) is ill-conditioned 
even after the substitution of variables (4). In connection with this, we consider another 
method of transformation of the system matrix. If we add the first of Eqs. (7) to the second 
equation and subtract the first equation from the second equation, we convert to the equival- 
ent system 

(T~ @ T%) + qin= 0, 

(8) 
(T~ - -  T~) - -  O~ (Tt - -  Tin) - -  qin= 0, 

which, after linearization and substitution of the variables (4) and (5), is well-condi- 
tioned and appropriate for solving by the method of conjugate gradients. 

In a more general case, we consider a physical system with a screen, on the sides of 
which the surface zones I and m are situated. We isolate from the general system of Eqs. 
(i) the equation of heat balance for these two zones: 

X Rz,T~ + Ru T~+ A.T, q- ~ AoT, + S. = O; 
i-I i#t (9a) 

X R,,jT~+RmmT~ + A ~ T ~ +  ~ A ~ w T j + S m = O  

and replace them by the equivalent pair of equations 

(9b) 

[(R~j + R.j) T~ + (&; + A.j) TA + (R. + T.t) TZ + 
]~l,m 

+ (R~m + Rzm) T% + (Au + A~3 T~ + (A~+ A,~) r~ + & + S~ = o; 
(lOa) 

[(-- Ro + R,~j) T} + (-- Ao + Am~) TA + (-- R~z + Rm,) Tr + 
j ~l,m 

~- (Rmra =- R~m) T~ + (-- Au + A~z) Tz + ( A ~  -- Azm) T,~ + Sm -- St = O. 

(10a) 

(lOb) 
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Next the system of Eqs. (1), modified in this way, is linearized by Newton's method. 
The increments AT i are replaced by the increments kXi, which for i #! are determined from 
(4). For i = 4 m, substitution of the variables looks different: 

Xm 

Xl = (Rn -~- Rmz) T; -t- (Azz + A,~z) Tz + 

+(Rtm + Rr~m) T% + (Az.~ + A ..... ) T~,,; 

= (-- R~.~ + R .... ) r~  + (--  Atm + A~m) Tm .+- 

@ (-- Rtz q- Rmz) rr @ (--  Air @ Araz) Tz. 
(li) 

From this, we obtain the relationship between the increments AX i and AT i for i = I, m: 

where 

AXz = euATz + ez.~ATm; 

AX,. = e.aAT z + e~.,~AT,~; 

ATl = cazAXI -k c~mAX.~; 

AT., = Cr~zAXz @ c,~.~AX,~, 

e~, = 4(Rt~ -}- R,~) (T~~ -} - A. +- A.,~; 

e ,~  = 4 ( - -  Rz: + R . . )  (T  O )a __  A.,i + A . . ,  i = l, m; 

ozz = er~m/Atm; cm~ = ezt/Al~; 

Clm = - -  e~m/ A'm; Cmt ~" ~-- emz,:' Atm; 

~ l m  ~ ~lleram - -  (~lmenzl. 

(12) 

(13) 

(14) 

After we have substituted AXi ~ for ATi ~ from (4) or (13), we convert to a well-condi- 
tioned linear system, and, as a result of solving it, we determine kXi ~ and the new values 
of Xi I = Xi ~ + 5Xi ~ For i r l, m, the new values of the temperature Ti I are determined 
after the nonlinear Eq. (6) has been solved, and for the determination of T } and Tm z, the 
system of two equations (ii) is solved by Newton's method. 

The numerical experiments show that the change of variables (11)-(13) yields better 
results in the sense of convergence, as compared with (4) and (5), when the following con- 
ditions,are simultaneously fulfilled: 

I B l ~ / I B m m i ~ 6 ' 6 ~  0,8, 
Bmt/iBz~l ~ 8, (15)  

where Bij are the coefficients of the linearized system of Eqs. (3'). 

Algorithm of the Method. We formulate next an algorithm for the proposed method, 
whose starting point is the linearized system of Eqs. (3'). An analysis of the coeffi- 
cients of this system allows us to isolate pairs of the strongly interconnected zones, for 
which condition (15) is fulfilled. We call the two pairs of zones (11, ml) and (12, m2) 
nonintersecting, if the sequence of the zone numbers Iz, mz, �89 m 2 does not contain the 
same numbers. We denote the set of these pairs by H2 = {(ll, mz), (l=, m 2) ..... (fk, mk)}, 
and the corresponding set of the zone numbers by Rz = {/z, mz, 12, m2 ..... lk, mk}- We 
define also the set N 0 Of the zone numbers that do not form pairs. 

Preconditioning of the matrix of the linear system (3') is reduced to the substitution 
of the increments AX i for the corrections AT i. If i e N0, then for the substitution of 
variables, we use (4); otherwise (13) is used. As a result, system (3') assumes the form 

tlHft ItBtl IlPli Axo  = - -  %0, ( 1 6 )  

where 
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Fig. 2. Dependence of the calculation time for solving a test example 
on an ES-1033 computer on the number of zones: i) Newton-Raphson method; 
2) modified Newton-Raphson method. 
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(4Ru(r ~ i = j ,  gEHo; 
O, i=/=j, iCllo, j C H o ,  

and the values of cij are taken from (14). 

After symmetrization, the system of linear equations (16) is solved by the method of 
conjugate gradients. The new values of Xi I = Xi ~ + AXi ~ are used for the calculation of 
Ti I by means of solving separate nonlinear equations (6) (for i e H0) or the system of non- 
linear Eqs. (ii), when i e K I. 

Introduction of a Barrier. The coefficients of radiation exchange Rij are distributed 
along-t--h~e~un-eev~nly-- O-~ten the difference between the nondiagonal elements in the 
column constitute a few orders, which means that some zones are almost completely screened 
from the radiation of other zones. The cause for this might be the geometrical peculiari- 
ties of the object or the high optical density of the medium. If in the linearization of 
the system of Eqs. (i) we do not take account of weak interactions of the zones, then we 
can achieve a certain economy in calculations. With this in mind we introduce a relative 
barrier $ < 1 and when forming the coefficients of the linear system (3), we discard the 
coefficients Rij < ~IRjjl. The value of the relative barrier ~ does not depend on the parti- 
cular problem. 

Numerical Experiments. The problem selected for testing the method is similar in many 
ways to those encountered in the analysis of heat exchange in the radiation pipes or re- 
cuperators of industrial furnaces. In Fig. ib, a heat-exchanging element is shown, which 
consists of an external dead-end pipe with a diameter of 2d and an internal pipe, open 
freely, with a diameter of d. A gas with initial temperature T'g and constant absorption 
coefficient ~ enters the inner pipe and is removed through the ring gap between the pipes. 

The pipes are made of a material with constant coefficient of thermal conductivity X. 
The surfaces of heat exchange FI, F2, F3, and F 4 (Fig. ib) are absolutely black. The co- 
efficient of heat emission from the gas to the surfaces of pipes is not considered. The 
lower half of the surface F 4 freely radiates in the open space, the upper half of this sur- 
face is adiabatic. 

It is assumed that the pipe lengths are ! >> d, and the wall thicknesses are h << D, so that 
longitudinal heat transfer owing to radiation and heat conduction can be neglected. In 
addition, it is assumed that the gas is well-mixed and its temperature depends only on the 
coordinate x. For these conditions it is required to determine the gas temperature Tg(x) 
and the temperatures of heat-exchanging surfaces Tsi(X, ~), i = i .... , 4. The solution 
of this problem can be represented in the dimensionless form @g(X/l) = Tg/T'g; Osi(X/ l,~ ) = 
Tsi/T'g and depends on three dimensionless parameters: 

%1 = ~d; X~ = W / ( ld~ ( rg ) a ) ;  Xa = s163 (Tg)O. (17) 

At present, the only method that allows us to solve problems of this type is a zonal 
method. A heat-exchanging element is divided lengthwise into the regions to be calculated, 
each of which is considered as a system, closed with respect to radiation. The accuracy 
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F i g .  3. Dependence  o f  t h e  c a l c u l a t i o n  t i m e  f o r  s o l v i n g  a t e s t  examp le  
on the parameters of the algorithm: a) dependence on the degree of the 
"coupling" of the zones <<X3>>: [I) using substitution of variables (4); 
2) using substitution of variables (ii)]; b) dependence on the value of 
the relative barrier ~ [(i), 68 = 5"10-4; 2) 10-3; 3) 5"10-3; 4) 10-2]. 

of the calculation depends both on the total number of calculated regions and on the degree 
of detailing of the discrete model for each of them. 

In the given case, for the calculation of the coefficients Rij in the system of Eqs. 
(i), the surfaces F I and F 2 were divided into 16 equal bands and the surface F3, into 32 
bands. The upper part of the surface F 4 was not considered since it did not participate 
in heat exchange. The lower part of this surface was divided into 16 bands. With con- 
sideration for symmetry, these bands were paired into surface zones. As a result, within 
each calculated region we isolated 40 surface zones. The total number of zones with con- 
sideration for two spatial zones was equal to 42. 

Therefore, the complete model of the heat-exchanging element consisted of N = 42"N x 
zones, where N x is the number of the calculated regions. The unknown zone temperatures 
were determined by solving the system of nonlinear Eqs. (i). The results of the solution 
of the problem for Xl = 0.3, X2 = 3, X3 = 30 and different N x = i, 2, 5, i0 are represented 
in Fig. ic and d. The isotherms for the surface F 2 (Fig. le) and F 3 (Fig. if) were plotted 
on the basis of numerical simulation for XI = 0.3, X2 = 3, X3 = 30, N x = i0. 

The parameter Xa was taken large enough to make the temperature gradient on the walls 
of the pipes negligible. Satisfactory convergence of results to the solution of the problem 
is attained only for N x = 5, and the total number of the unknowns in the system of Eqs. 
(i) is N = 42 x 5 = 210. 

In Fig. 2, the calculation time for the ES-I033 processor is shown for solving non- 
linear Eqs. (I) as a function of the number of unknowns. The method proposed in the given 
work was compared to the classic Newton-Raphson method. Since both methods are iterative, 
at first the solution of the system of Eqs. (i) was carried out until complete convergence 
was attained, and the time required to attain an accuracy of 6e = 5-10 -4 was determined, 
where 68 is the maximal error in the determination of the dimensionless temperature. As 
is seen from Fig. 2, the calculation time according to the Newton-Raphson method for N = 
210 is 7.5 times higher as compared with the method proposed in this work. 

An investigation of the effect of preconditioning (4), (5), and (11)-(13) on the algo- 
rithm convergence for different values of the parameter X3 was carried out for the case 
(Fig. ib) with the number of independent unknowns equal to 210 for XI = 0.3 and X= = 3. 
The results of simulation are shown in Fig. 3a. The intersection point of curves 1 and 2 
corresponds to the value of 6 from (15) equal to 0.792. In the given example the maximal 
temperature gradient along the thickness of the wall of the external pipe for X3 = 3 is 
363 K, for X3 = 300-6 K, for T'g = 2000 K. 

An investigation of the effect of the relative barrier ~ on the accuracy of the solu- 
tion of the problem was carried out for the following values: X1 = 0.3, X2 = 3, X3 = 30. 
The results of simulation are given in Fig. 3b. 

As simulation has shown, the inclusion of a barrier mechanism in the general case does 
not reduce the calculation time for solving the problem with specified accuracy attainable 
for a particular value of a barrier. However, in a number of problems of conjugated and 
complicated heat exchange in which there are variable boundary conditions and, consequently, 
in which there is no necessity to look for the exact solution of a nonlinear system, the 
use of a barrier results in an improvement in the calculating time on each iteration for a 
nonlinear system. 
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Conclusions. A numerical method is offered for solving the system of nonlinear equa- 
tions arising from the algebraic approximation of equations of radiation and convection 
energy transport. The classic Newton-Raphson scheme is proposed as a foundation of the 
method. The use of the method of conjugate gradients with preliminary conditioning and 
symmetrization of the matrix of the linearized system results in considerable improvement 
in the computer memory and computational time as compared with the Newton-Raphson scheme 
in systems with the number of variables exceeding I00. 

An application of preconditioning on the basis of the substitution of variables (12) 
allows one to solve effectively the problems of complicated heat exchange in systems with 
pairs of "strongly interacting" zones, such as thin screens. 

NOTATION 

T, temperature vector; S, vector of external sources in the zones; R, matrix of co- 
efficients of radiation heat exchange; A, convective matrix, B, matrix of linearized sys- 
tem; a, Stefan-Boltzmann constant; ~, coefficient of thermal conductivity; h, plate thick- 
ness or thickness of the pipe wall; a, coefficient of absorption of heat carrier; W, water 
equivalent of radiating gas; T'g, temperature of heat carrier at the input of the unit. 
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SOLITARY STRESS WAVES IN ANONLINEAR THERMOELASTIC MEDIUM 

M. D. Martynenko and Nguyen Dang Bik UDC 539.3 

The propagation process of solitary stress waves in a medium with five thermo- 
elastic characteristics is investigated withinthe one-dimensional statement. 
Existence conditions and geometric characteristics of solitary waves are ob- 
tained, and restrictions are found for the elastic and thermal constants. 

i. Statement of the Problem. Propagation of one-dimensional waves in a thermoelastic 
medium in the absence of heat sources and sinks is described within five-constant nonlinear 
thermoelastic theory by the system of equations [1-3]: 

1 (1) e =  e+--~-e 2, 

= cle + c 2 e 2 - - T ,  (2) 

V.I. Lenin Belorussian State University, Minsk. Translated from Inzhenerno-fiziches- 
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